Masterarbeit - Machine Learning: Concept Extraction Validation Benchmark - #2151187

Fraunhofer IPA


Date: vor 1 Tag
Stadt: Stuttgart
Vertragstyp: Ganztags
Arbeitsplan: Volle Tag
Fraunhofer IPA
Field of study: computer science, mathematics, software design, software engineering, technical computer science or comparable.

Machine Learning (ML) models are reaching a maturity level that allows their operational use in businesses. However, in some areas, this use is limited by their ”black box” nature: the decision-making logic and potential errors of a model are not transparent, making it unsuitable for safety-critical applications or those requiring trust in the model. The field of Explainable Artificial Intelligence (XAI) addresses this by providing methods to make model behavior more interpretable. Among these, concept-based and prototype-based methods show promise in offering intuitive insights into model decisions. To truly build trust and ensure safe deployment of models, however, it is not enough for XAI methods to be intuitive — they must must also meet some key requirements. For example, the methods need to be reliable and their explanations need to be faithful to the model, while having a complexity level appropriate for human users. To ensure that these properties are met, XAI methods must be rigorously validated. Furthermore, such an evaluation should be systematic, allowing to compare most methods on the same ground. A framework for this is still largely missing in current XAI pipelines.

This thesis investigates the systematic benchmarking of concept-based explanation methods for machine learning models. It adapts an existing benchmarking framework, originally developed for pro- totype methods, to support the evaluation of concept-based explanations. The project also includes the empirical testing of concept extraction methods, evaluating their effectiveness and reliability using diverse metrics and datasets. The work contributes toward standardizing the evaluation of XAI techniques to ensure that generated explanations are meaningful and faithful to the underlying model.

Was Sie bei uns tun

The candidate will first conduct a literature review to identify desirable properties of trustworthy explanations and corresponding evaluation criteria. This includes analyzing existing benchmarks, theoretical foundations, and practical requirements of concept-based XAI methods. Based on this, suitable evaluation metrics will be selected or developed and integrated into the benchmarking pipeline. The newly implemented metrics will then be used to evaluate a concept extraction method in various scenarios.

This requires proficiency in Python and familiarity with modern ML libraries.

Scope:

  • Identifying and formalizing evaluation properties for concept-based XAI methods
  • Adapting an existing benchmark suite for prototype methods to accommodate concept-based explanations
  • Implementing and testing relevant evaluation metrics
  • Empirical benchmarking of a selected concept extraction method across multiple datasets and models


Was Sie mitbringen

  • Solid understanding of machine learning
  • Strong programming skills in Python
  • Ideally, prior experience with explainability or XAI methods
  • Independent, reliable, and result-oriented working style
  • Good English communication skills


Was Sie erwarten können

  • Interesting tasks in applied research
  • Intensive support during the project
  • Collaboration projekt with University of Stuttgart IFF and RWTH Aachen University DSME


Wir wertschätzen und fördern die Vielfalt der Kompetenzen unserer Mitarbeitenden und begrüßen daher alle Bewerbungen – unabhängig von Alter, Geschlecht, Nationalität, ethnischer und sozialer Herkunft, Religion, Weltanschauung, Behinderung sowie sexueller Orientierung und Identität. Schwerbehinderte Menschen werden bei gleicher Eignung bevorzugt eingestellt.

Mit ihrer Fokussierung auf zukunftsrelevante Schlüsseltechnologien sowie auf die Verwertung der Ergebnisse in Wirtschaft und Industrie spielt die Fraunhofer-Gesellschaft eine zentrale Rolle im Innovationsprozess. Als Wegweiser und Impulsgeber für innovative Entwicklungen und wissenschaftliche Exzellenz wirkt sie mit an der Gestaltung unserer Gesellschaft und unserer Zukunft.

Haben wir Ihr Interesse geweckt? Dann bewerben Sie sich jetzt online mit Ihren aussagekräftigen Bewerbungsunterlagen. Wir freuen uns darauf, Sie kennenzulernen!

Frau Lisa Bauer

Recruiting

Tel. +49 711 970-3681

[email protected]

Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

www.ipa.fraunhofer.de

Kennziffer: 79958

Wie bewerbe ich mich?

Um sich für diesen Job zu bewerben, müssen Sie auf unserer Website autorisieren. Wenn Sie noch kein Konto haben, registrieren Sie sich bitte.

Veröffentlichen Sie einen Lebenslauf

Ähnliche Jobs

Führungskraft gesucht: Engagement gefragt!

TieTalent,
vor 13 Stunden
About Beschreibung: Pflegedienstleitung (w/m/d) - Überblick Wir suchen eine engagierte Pflegedienstleitung für unsere Einrichtung in Hamburg-Rahlstedt. Die Hauptaufgabe besteht darin, das Pflegepersonal zu führen und anzuleiten sowie die Einsatzplanung und -koordination sicherzustellen. Aufgaben Führung und Anleitung des Pflegepersonals Organisation der...
TieTalent

Assistenz in Teilzeit 20 Std. (w/m/d)

Ernst Klett Verlag GmbH,
€41,000 - €57,500 / Jahr
vor 16 Stunden
Ihres. als: Assistenz in Teilzeit 20 Std. (w/m/d) Stuttgart Ab sofort für 2 Jahre befristet Ihre Aufgaben bei uns Sie unterstützen die Referatsleitung bei allen administrativen und organisatorischen Aufgaben. Sie unterstützen bei der Kontierung und Verbuchung von Rechnungen und dem...
Ernst Klett Verlag GmbH

Werkstudent:in Sustainability (m/w/d) Energy & Environment

STRABAG AG - Innovation & Digitalisation,
vor 16 Stunden
Was für uns zählt Du studierst Bauingenieurwesen oder Architektur. Du bringst Erfahrung in der BIM-Modellierung mit, idealerweise mit Revit. Du besitzt Kenntnisse in der Erstellung von Ökobilanzen. Du zeichnest dich durch analytisches Denken und technisches Verständnis aus. Du bist sicher...